
Forms as algorithms: The case of the “normal form”

Introduction

In this short paper, I discuss how the musical set-theory concept of the “normal form” of a pitch-class

set is presented as and, sometimes, conflated with an algorithm. Algorithm designers in all fields,

including music studies, seek dependable processes that allow us to cope with the messiness of the

world, refracted through a model that expresses salient features of that field’s reality as data. The

algorithmic framing of the normal form is tool that makes certain dissimilar contigencies—the various

forms of musical “surfaces”—appear similar, normalizing them in a way expressly designed to reveal

their essential characteristics. In the case of pitch-class sets, this approximates the interval content of

the set.

On another level, as an apparently popular way of explaining a desired learning outcome in the

discipline of music theory—that is, being able to determine the normal form of any (two) pitch-class

set(s)—it attempts to smooth over differences between individual learners by offering them a

repeatable, deterministic, and general strategy for coping with messy data: the manifestly diverse

“presentations” of “pitch-class sets”, alias “post-tonal music”. This regulative function in the specific

context of twentieth-century music theory can be understood as one of many consequences of the

influence of what I call a computational attitude in musical thought, especially in music theory, which

I assert was felt strongly during the 1960s, the period of the widespread adoption of commercially

produced digital computers.

To achieve this, I attempt a first approximation at a working definition for what an algorithm actually

is, and explore how algorithms relate to more widely-applicable category of computationalism in

twentieth-century scientific thought. To do this, I refer to a number of very recent writings from

the emerging discipline of what is sometimes called “critical algorithm studies.” Next, discuss

formal resemblances between descriptions of the notion of “normal form” as they appear in modern

post-tonal theory textbooks and computer code. Granting this analogy, I then suggest that the

1

Eamonn Bell
Cite as: Eamonn Bell. “Forms as algorithms: The case of the ‘normal form’”, Sound and Sonorities: Form and Forms in Music, Buffalo State College (SUNY Buffalo State) (27 April 2018)



computational aspect that these descriptions have taken on is not merely a result of the familiar whiff

of the logical-positivist program that typifies twentieth-century music theory, but is the result of a

deliberate choice to describe the concept using syntactic and lexical conventions that approximate

the quasi-linguistic constraints that are typical of actual computer code. I make use of the term

“pseudocode” to refer to descriptions of algorithmic processes that use a controlled vocabulary

and stripped down-syntax to present their basic structure so that they may be readily converted to

computer code, without being tied to any one specific programming language or dialect. By making

use of the rhetoric of pseudocode, these authors “algorithmize” the notion of normal form. Only by

learning to recognize such algorithmic expressions of musical concepts (be they formal processes,

techniques of composition, techniques of analysis, or more) can we begin to decide whether we can

live with or without them as musicians and teachers of music.

Algorithms everywhere?

It is now a trope of the genre to motivate discussions of algorithms with assertions of their ubiquity:

[D]ozens of key sets of algorithms are shaping everyday practices and tasks, including
those that perform search, secure encrypted exchange, recommendation, pattern
recognition, data compression, auto-correction, routing, predicting, profiling, simulation
and optimisation.1

Algorithms are everywhere. They already dominate the stock market, compose music,
drive cars, write news articles, and author long mathematical proofs—and their powers of
creative authorship are just beginning to take shape.2

If these select quotations can be said to reflect some discursive agreement that algorithms are

everywhere, there is less consensus as to what exactly they might be. As Tarleton Gillespie puts it in

the useful collected volume Digital Cultures, “we find ourselves more ready to proclaim the impact of

algorithms than to say what they are.”3

1. Kitchin (2017), p. 15. Kitchin’s laundry list is inspired by the nine algorithms described in MacCormick (2013).
MacCormick’s account is a more popular survey.

2. Finn (2017). p. 15.
3. Gillespie (2016), p. 189.

2



For instance, in a 2013 report for the Tow Center for Digital Journalism at Columbia University,

Nicholas Diakopoulos defines an algorithm “as a series of steps undertaken in order to solve a

particular problem or accomplish a defined outcome.”4 Perhaps such a definition is surprising. For

one, it does not refer to any of the specific socio-technical systems—specifically the computational

infrastructure required to make use of algorithms at the scale of demanded by a global financial

and cultural economy—whose existence are implied by the contemporary abundance of examples of

algorithms in the wild. Notably, its passive voice is indeterminate as to who (or what) is taking the

steps; it is mute as to whether algorithms are the domain of human, animal, or machinic activity.

Italicized text on the slide indicates that Diakopulos’s definition is in fact a paraphrase of a more

detailed definition appearing in the Unabridged Merriam-Webster:

a procedure for solving a mathematical problem (as of finding the greatest common
divisor) in a finite number of steps that frequently involves repetition of an operation;
broadly: a step-by-step procedure for solving a problem or accomplishing some end
especially by a computer.5

Diakopulous suppresses the more technical aspects of this dictionary definition, and with good

reason: from his perspective, the problems that algorithms solve today are economic, social, and

cultural, as much as they are mathematical or computational. However, a fuller definition, thanks

to Merriam-Webster, moves beyond a definition of “algorithm” almost exclusively teleological (that

is, something used “to solve a particular problem or accomplish a defined objective”) to a definition

which suggests that algorithms have something to do with mathematics and computers, and, relatedly,

qualifies algorithmic procedures as both finite and frequently repetitious.

In his 2017 book,What Algorithms Want, Ed Finn distinguishes between two kinds of definitions of

algorithm: that of the pragmatist, and that of the computationalist. As a particularly acute example

of a pragmatic definition, Finn cites the sparer-still definition of the computer scientist Robert

Sedgewick, Finn’s own computer science teacher and author of an extremely influential introduction

4. Diakopoulos (2013), p. 3
5. Webster’s Third New International Dictionary, Unabridged, s.v. “algorithm,” accessed April 21, 2018,

http://unabridged.merriam-webster.com.

3



to algorithms for undergraduates. To Sedgewick, an algorithm is simply a “method for solving a

problem”. Diakopolous, Sedgewick, and others typify pragmatist definitions of “algorithm” since,

as definitions, they describe their referent merely in terms of its “utility”: algorithms are thing that

succeed in doing other things; they illuminate “pathways between problems and solutions”, but how

they do so is not of any import or interest to the user.6 All that matters is that they solve the problem

their designer sets out to solve.

On this view, good algorithms are those that “just work”, while bad algorithms are those that fail.

On the other hand, computationalist definitions task “algorithm” with ontological work, asserting

that algorithms hold the promise of explanatory value not by providing solutions to the problems

they are designed to solve, but also with respect to how those problems are (or must be) solved in

reality, outside the domain of the algorithm. From this perspectives, “algorithms do not merely

describe cultural processes with more or less accuracy: those proceses are themselves [held to

be] computational machines that can be mathematically duplicated.”7 The computationalist

understanding fuels optimism that the decades-old promissory note of general artificial intelligence

will be redeemed when a sufficiently faithful algorithmic model of cognition can be described and

implemented precisely because the “cultural process” of cognition is not just reducible to (per the

pragmatist view), but is in fact “a series of steps undertaken in order to solve a particular problem”.

Neither of these candidate definitions of “algorithm” are without their problems. The breadth of

the utilitarian definition of the pragmatist means that almost any procedural solution to a given

problem could be understood, packaged, and sold as “algorithmic”, questionably lending it a set of

virtuous associations. As Gillespie points out, algorithms are thought—incorrectly or otherwise—to be

“mathematical, logical, impartial, [and] consistent.”8 On Contrastatively, the ontological overreach of

the computationalist definition, despite its popularity, risks confusion on the part of practicioners of

algorithms between the useful fictions of algorithmic reasoning and the empirical reality of cognitive

processes. There is no a priori reason to be believe that human behavior in the main is well-explained

6. Finn (2017), p. 18.
7. Finn (2017), p. 22.
8. Gillespie (2016), p. 23

4



by mechanistic analogies with a twentieth-century notion of computation. Thus, both pragmatic

and computationalist definitions have their potential pitfalls. Understanding which, if any, of these

definitions are operable in writing about musical algorithms, is the first step toward avoiding these

slips.

I am not putting the various senses supported by the word “algorithm” in evidence so that we can

resolve some blurry notion into a coherent and exhaustive set of mutually interdependent meanings.

Rather, I want to remind you that despite its apparent stability as a term of art for computer scientists,

originating in the everyday mathematics of the bāzār, the stakes for understanding in what sense

something is claimed to be algorithmic are not just limited to the concerns of technologists, but

extend to those of us interested in cognition, and in particular, the cognition of cultural products:

music, naturally, included.

As musicologists and music theorists, we ought to take particular heed of the shades of meaning

of “algorithm” in our discussions about the future of music in the (second? third?) age of

artificial/algorithmic intelligence. If this brief discussion hasn’t succeeded in raising algorithmic

consciousness, it should at least precipitate a respect for “algorithmic conscientiousness”: a careful

attention to the specific conceptions of “algorithm” as they manifest themselves in writings outside of

the domain of technology proper, and, as we will see, in writings about music theory.

Algorithms closer to home

The question to be answered, then is this: if algorithms—whatever they are—are really everywhere,

are they perhaps to be found closer to home: that is, in the discipline of music theory? If they are,

it seems like a perfect opportunity to exercise our algorithmic conscientiousness and tease out the

meaning of these algorithms, how they came to our attention in the first place, and what we ought to

do about them,

To that end, a quick review of the concept of the “normal form”. A core objective of most introductory

5



musical set-theory courses is to ensure that the student knows how to compute the normal form (and,

relatedly, the prime form) of a pitch-class set. Loosely, the normal form of a such a set is the ordering

of that set (with duplicates removed) that is most densely packed. (The prime form of a pitch-class set

is the the most normal (in the sense just defined) of: (a) its normal form transposed such that it begins

with pc0; (b) its normal form, inverted, and transposed such that it begins with pc0). In a passage that

has remained relatively unchanged since the appearance of the first edition almost thirty years ago,

Joseph N. Straus motivates the introduction of the concept in his Introduction to Post-Tonal Theory, in

the following way:

A pitch-class set can be presented musically in a variety of ways. Conversely, many
different musical figures can represent the same pitch-class set. If we want to be able to
recognize a pitch-class set no matter how it is presented in the music, it will be helpful
to put it into a simple, compact, easily grasped form called the normal form. The normal
form—the most compressed way of writing a pitch-class set—makes it easy to see the
essential attributes of a set and to compare it to other sets.9

According to Straus, there are two reasons to be interested in the normal form of a pitch-class set,

then. First, to understand the “essential attributes” of a set; second, to compare it to other sets. John

Rahn echoes the second of these reasons in his earlier Basic Atonal Theory (1980), writing: “in order

to be able to compare sets easily, it has been found necessary to choose one particular standard order

to list them in.”10 It is typical to describe the process of arriving at the normal form—this “particular

standard order”—as a sequence of imperative directions to the student. Straus again:

1. Excluding doublings, write the pitch classes as though they were a scale[.] […]
2. Choose the ordering that has the smallest interval from first to last[.] […]
3. If there is a tie […] choose the ordering that is most clustered away from the top.

[…] If there is still a tie, compare the intervals between the first and second-to-last
notes[,] […] and so on.

4. If [this process] still results in a tie, then choose the ordering beginning with the
pitch class represented by the smallest integer.11

In this description, an ordered sequence of imperatives directs the student to manipulate a musical

representation of the pitch-class set, notation, without direct reference to an overall goal. Each

9. Straus (2005), p. 35
10. Rahn (1980), p. 31.
11. Straus (2005), p. 36

6



instruction stands alone as a direction to fiddle with the pitch-class set on the level of its consituent

parts: write its pitch class representatives as a scale, compare this interval with that, choose an

ordering based on the tie-breaking pitch-class magnitude. The desired global property—dense

packing or “normality”—is the result of the faithful application of local manipulations. Additionally,

this description asks the student to intermittently stop the process to evaluate whether certain

facts obtain: “if there is a tie”, “if there is still a tie”. If the conditional is true, then the student

performs further steps; if not, they do not. Finally, we note that this procedure is implied by the

author to guarantee the correct outcome when applied to any pitch-class set. That is, it is insensitive

to the particular pitch-class set under consideration: it is asserted that all pitch-class sets we might

encounter will yield up their normal form if these steps are followed; there are no edge cases.

I suggest that each of these three features make this description of the process of putting something

in normal form loosely resemble a computer program. First that the normal form procedure is here

made to consist in an ordered sequence of imperative statements. In computer code, computational

directives are specified to the computer as a sequence of statements, according to some conventional

ordering. The computer then applies this conventional ordering in the execution of the code,

proceeding from statement to statement in accordance with that convention. As with instructions for

humans (such as recipes for cooking or this normal form procedure), the most common ordering of

statements in a computer program is the literal order in which it will subsequently be executed, but

this need not be the case.

Second, Straus’ description of the process makes use of “if…then” constructions, which interrupt the

regular flow of the procedure when certain conditions hold. If there’s one thing that digital computers

are good at, it’s acting on distinctions between between true and false, since the overwhelming

majority of digital computers make use of the binary system to internally represent the state

of a computer program as a sequence of zeros and ones. The use of “if…then” constructions in

programming languages are commonplace ways of providing optional and alternative paths through

computer code, allowing the conventional order of execution (alluded to above) to be temporarily

suspended so that special cases or conditions for the intended termination of a program can be

7



handled predictably. This feature of computer code (and, by analogy, the algorithmic description of

the “normal form” concept) is called “conditional branching”.

Finally, because of the guarantee—implied but not proven in Straus’ description—that the procedure

will generate an accurate normal form for all pitch-class sets, the procedure can be written down once

in a sufficiently general way and reused, no matter what specific pitch-class set is to hand. In actual

computer code, this procedure would be modeled as a subroutine. That is, a modular and reusable

chunk of code that can be specified once and reused ad lib throughout a program, or over the useful

lifespan of a software package. To write a subroutine so that it can be reused, statements inside the

subroutine are constructed so that they do not refer to internal representations of a specific object, but

to a placeholder, which, like a Cloze test or MadLibs, can be populated with arbitrary (but syntactically

valid) objects. In the case of the normal form procedure, Straus’s description doesn’t make reference

to a specific pitch-class set, but to a some variable pitch-class set, considered in the abstract. This

ensures that the procedure is understood by the reader to be useful with all pitch-class sets, not just,

some finite subset of all possible pitch-class sets: it is a general procedure.

Robert Morris’s description of the procedure for the normal form (published in 1991 in his Class notes

for atonal music theory) also yields to a similar reading, even more proudly displaying its computational

colors in pared-down language evidencing yet other tropes characteristic of actual computer code:

variable assignments (“Let D = #D -1”), cryptic variable names (“call this E”), pruning and deletion,

all along with along with control flow statements, such as “if…then” conditional branching, and “go

to” statements that reference specific individual steps of the procedure. In this instance, Morris is

apparently under no compunction to represent this process as anything other than an algorithm,

naming it so in his text.

Rahn/Morris Algorithm: Normal-Form Representative

Definition: Span (sub-K) of an ordered set X:

SK(X) = XK − X0 where K ≤ #X − 1

1. D is a member of some SC Z. Write pcset D as an ordered set in ascending
numerical order. Call this E.

8



2. Let K = #D − 1.
3. Construct the set Er consisting of all rotations of E and RT0IE. If Er contains

duplicate members, prune all duplicates.
4. Find SK for each member of Er.
5. Find the smallest value of SK from members of Er. Call it m.
6. Delete all members of Er with Sk greater than m.
7. If Er has only one member, go to step 11.
8. K = K − 1.
9. If K = 0, find the member of Er with the lowest first pc, delete all other members

of Er, and go to step 11.
10. Go to step 4.
11. Transpose the remaining member of Er to begin pc 0. The result is the

normal-form representative of SC Z and can be found on both the Rahn and
Morris set-class tables.12

Why might these two authors structure their descriptions in accordance with these strained linguistic

conventions? What is this distinctive rhetorical practice, which sits somewhere between recipe book,

ordered checklist, and actual computer code?

I recognize it as pseudocode, “a notation resembling a simplified programming language, used

in program design”. The use of pseudocode is a commonplace of contemporary computer science

literature, since it provides a mechanism for expressing computational procedures in a way that is

agnostic of the reader’s fluency in any one programming language, making it a useful template for

comprehension and, importantly, implementation by as many readers as possible. Implementation is

the process, usually undertaken by a computer programmer, that bridges the gap between algorithm

and computer by taking a rigid specification of the algorithm, such as that (hopefully) provided by

a clear and accurate pseudocode description of the algorithm, and transmediating it, line by line, in

to the statements of a specific computer programming language, for a specific system, in a specific

context of production. Implementation is the process by which the algorthmic idea is reified as an

actually running computer program.

Pseudocode texts, then, are instructions for humans. I make the suggestion here that in these

explanations of the “normal form”, as they appear in music theory textbooks, the rhetoric of

pseudocode functions on two registers at once: it serves both as a template for the student interested

12. Morris (1991), 1991

9



in computational implementation of the concepts in described therein, but also as a portable

and intersubjectively robust set of procedures that can be used by hand, even without expertise

in a specific programming language. In so doing, pseudocode descriptions of the normal form

procedure “algorithmize” the concept of the normal form—a concept that could be, and was, defined

otherwise—in a way that views students as both potential programmers and as interlocutors to be

programmed.

If you believe that Straus’s and Morris’s description are somehow like computer code, and if we recall

the pedagogical functions of their texts, then it is both provocative and productive to think—even

fleetingly—about the idea that the student themselves is the thing that is being programmed here,

being programmed with a set of routines instrumental to the educational objectives of these textbooks.

Whether school students should be equipped with certain basic algorithms—let’s say learning the

general principles of computing long division by hand—became a flashpoint in debates among

educationalists in the US, as the virtue of rote learning in mathematics education fell under suspicion

during the late 1980s.

Similarly, arguments for and against the inclusion of imperative, algorithmic specifications of musical

processes in the music theory curriculum balance the need for drilling the basics of the mathematics

that appear to be useful for the description of certain kinds of music with a desire for other ways to

encourage investigation and play with musical materials. Such ways are, perhaps, less structured:

their guarantees of intersubjectivity are less robust; their claims to generality more tenuous; their

repeatability as tools for thinking about music more suspect. In closing, I tentatively suggest that this

is not always a bad thing. I fully intend to be equivocal when I say that, in short, becoming sensitizied

to the notion that there are “algorithms” of music theory is the first step toward design musical

pedagogies and musical practices that are–for better or worse–less algorithmic.

10



Works cited

Diakopoulos, Nicholas. 2013. “Algorithmic Accountability Reporting: On the Investigation of Black
Boxes.” A Tow/Knight Brief. Tow Center for Digital Journalism.

Finn, Ed. 2017. What Algorithms Want: Imagination in the Age of Computing. Cambridge, MA: MIT Press.

Gillespie, Tarleton. 2016. “Algorithm.” In Digital Keywords: A Vocabulary of Information Society and
Culture, edited by Benjamin Peters, Princeton University Press, 18–30. Princeton, N.J.; Oxford, UK.

Kitchin, Rob. 2017. “Thinking Critically About and Researching Algorithms.” Information,
Communication & Society 20 (1):14–29. https://doi.org/10.1080/1369118X.2016.1154087.

MacCormick, John. 2013. Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive
Today’s Computers. Princeton, N.J.: Princeton University Press.

Morris, Robert. 1991. Class Notes for Atonal Music Theory. Hanover, NH: Frog Peak Music.

Rahn, John. 1980. Basic Atonal Theory. New York: Longman.

Straus, Joseph Nathan. 2005. Introduction to Post-Tonal Theory. Upper Saddle River, N.J.: Prentice Hall.

11

https://doi.org/10.1080/1369118X.2016.1154087

	Forms as algorithms: The case of the ``normal form''
	Introduction
	Algorithms everywhere?
	Algorithms closer to home
	Works cited


